Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

Problems and pitfalls. Closing genomes, informatics, and errors

Ian Goodhead; Alistair Darby and Neil Hall

Conclusions

- Don't be scared off!
- Probably only applicable to smaller genomes
- All of the problems discussed are tractable
- Take home message:
 - Talk to us BEFORE you design your experiment

Outline

Basic concepts in genome sequencing and assembly

- Alignment and assembly of next-generation sequencing data
- Sources of error in assemblies
 - Repeats
 - Sequencing errors

How do you assemble a genome?

Sequencing Reads

Genome

To align or to assemble?

- Mapping / Alignment
 - Useful if you have a reference
 - Closely related
 - High quality (i.e. "finished")
- Useful for various applications:
 - RNA-seq
 - ChIP-seq
 - Methyl-seq
 - CNV-seq
 - SNP identification

Raw Sequence

Reference Sequence

Which alignment algorithm should I use?

BFAST - Blat-like Fast Accurate Search Tool. Written by Nils Homer, Stanley F. Nelson and Barry Merriman at UCLA. Bowtie - Ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome at a rate of 25 million reads BWA - Heng Lee's BWT Alignment program - a progression from Maq. BWA is a fast light-weighted tool that aligns short sequences to a sequence ELAND - Efficient Large-Scale Alignment of Nucleotide Databases. Whole genome alignments to a reference genome. Written by Illumina author Exonerate - Various forms of pairwise alignment (including Smith-Waterman-Gotoh) of DNA/protein against a reference. Authors are Guy St C Sla GenomeMapper - GenomeMapper is a short read mapping tool designed for accurate read alignments. It quickly aligns millions of reads either v GMAP - GMAP (Genomic Mapping and Alignment Program) for mRNA and EST Sequences. Developed by Thomas Wu and Colin Watanabe at Ger gnumap - The Genomic Next-generation Universal MAPper (gnumap) is a program designed to accurately map sequence data obtained from nex MAQ - Mapping and Assembly with Qualities (renamed from MAPASS2). Particularly designed for Illumina with preliminary functions to handle A MOSAIK - MOSAIK produces gapped alignments using the Smith-Waterman algorithm. Features a number of support tools. Support for Roche FL MrFAST and MrsFAST - mrFAST & mrsFAST are designed to map short reads generated with the Illumina platform to reference genome assemblie MUMmer - MUMmer is a modular system for the rapid whole genome alignment of finished or draft sequence. Released as a package providing Novocraft - Tools for reference alignment of paired-end and single-end Illumina reads. Uses a Needleman-Wunsch algorithm. Can support Bis-Se PASS - It supports Illumina, SOLID and Roche-FLX data formats and allows the user to modulate very finely the sensitivity of the alignments. Space RMAP - Assembles 20 - 64 bp Illumina reads to a FASTA reference genome. By Andrew D. Smith and Zhenyu Xuan at CSHL. (published in BMC Bio SeqMap - Supports up to 5 or more bp mismatches/INDELs. Highly tunable. Written by Hui Jiang from the Wong lab at Stanford. Builds available SHRIMP - Assembles to a reference sequence. Developed with Applied Biosystem's colourspace genomic representation in mind. Authors are Mi Slider- An application for the Illumina Sequence Analyzer output that uses the probability files instead of the sequence files as an input for alignr SOAP - SOAP (Short Oligonucleotide Alignment Program). A program for efficient gapped and ungapped alignment of short oligonucleotides onto SSAHA - SSAHA (Sequence Search and Alignment by Hashing Algorithm) is a tool for rapidly finding near exact matches in DNA or protein databa SOCS - Aligns SOLiD data. SOCS is built on an iterative variation of the Rabin-Karp string search algorithm, which uses hashing to reduce the set o SWIFT - The SWIFT suit is a software collection for fast index-based sequence comparison. It contains: SWIFT — fast local alignment search, guar SXOligoSearch - SXOligoSearch is a commercial platform offered by the Malaysian based Synamatix. Will align Illumina reads against a range of Re Vmatch - A versatile software tool for efficiently solving large scale sequence matching tasks. Vmatch subsumes the software tool REPuter, but is Zoom - ZOOM (Zillions Of Oligos Mapped) is designed to map millions of short reads, emerged by next-generation sequencing technology, back to

http://seqanswers.com/forums/showthread.php?t=43

Assembling 'short' NGS reads

- Required if no reference sequence available
- Typically uses very high coverage of short read data (eg. 50 150bp reads)

- Sometimes interspersed with longer reads

- Useful for various applications:
 - *de novo* genomics
 - *de novo* transcriptomics
 - CNV-seq
 - SNP identification
- Requires some heavy-duty computing

Which assembly algorithm should I use?

- * ABySS Assembly By Short Sequences. ABySS is a de novo sequence assembler that is design
- * ALLPATHS ALLPATHS: De novo assembly of whole-genome shotgun microreads. ALLPATHS is
- * Edena Edena (Exact DE Novo Assembler) is an assembler dedicated to process the millions of
- * EULER-SR Short read de novo assembly. By Mark J. Chaisson and Pavel A. Pevzner from UCS
- * MIRA2 MIRA (Mimicking Intelligent Read Assembly) is able to perform true hybrid de-novo
- * SEQAN A Consistency-based Consensus Algorithm for De Novo and Reference-guided Seque
- * <u>SHARCGS</u> De novo assembly of short reads. Authors are Dohm JC, Lottaz C, Borodina T and
- * <u>SSAKE</u> The Short Sequence Assembly by K-mer search and 3' read Extension (SSAKE) is a get
 * <u>SOAPdenovo</u> Part of the SOAP suite. See above.
- * VCAKE De novo assembly of short reads with robust error correction. An improvement on e
- * Velvet Velvet is a de novo genomic assembler specially designed for short read sequencing

http://seqanswers.com/forums/showthread.php?t=43

The problem of repeats

De-novo Assembly

- Assembled reads: 702,562
- Total number of contigs: 7,261

NGS Alignment

Annotated Reference Sequence

- 102 of the gaps in mapped sequence due to 975bp-long IS elements
- Equates to ~3% genome

Homopolymer Errors

454 Mate Pairs

• Insert size 3 kb, 8 kb & 20 kb

Complementary Technologies?

The positions of the gaps differ between the two technologies:

Entry: [🗹 SS_CDS.tab	🗹 SS_v_4549	5denovo_gap	s_modified.ta	ab 🗹 SS_v_4	54mapped_ga	ps.tab 🗹 S	S_v_3730_gaps	.tab					
SSU043	77 SSU0480 32		0 02 SSU049	→ DD 4 5 96 - SSU0	▶ ₽₽₽ ₽ ₩ ₽ ₩ 1499 UK SSU05	OSA U SSUOS		DDDDDDD 05173 SSU0522	SSU0528)	NAN CONTRA	SSU05 SSU0551	4 SSU055	■ D ■ D ■ D ■ D ■ D ■ D ■ D ■ D ■ D ■ D ■	
		Þ			Þ								DD.	
	misc_feature					eature			_			<u>r_</u> misc_1	feature	
										_	>			
		misc_feat	ure		D					mi	sc_feature	•	misc_fe	-
					D	V I								
M1SC_T	feature isc_fe	ature misc_te	eature		misc_reatur	re misc_feat	ure misc_t	eature			misc_feature	misc_f	eature	misc_
507000	513500	520000	526500	533000	539500	546000	552500	559000	565500	572000	578500	585000	591500	5980
	_	<u> </u>	<u> </u>	L			<u> </u>			—				<u> </u>
4	44					10								
SSU0474 j	SSUG	0484 SU⊨ SS	500492	SSU0497			0511 13				SSU0552		SSU0562 565	

Schematic showing the positions of the gaps present in the different assemblies.

Shotgun Sequencing

How to close gaps? Closing NGS generated genomes

- SFFfile split 454 MID tags
 - Multiple genomes in a single run may be preferable?
- Assembly with Newbler
- Convert ACE format to GAP
- Edit in GAP

000									X Contig	g Editor: +533 F	6HIPWC03GX1	7M								
Cons 2	•	Qual -1 🛟		Insert Edit Mod	des >> 🔲 Cutor	ffs Undo Next	Search Comman	nds >> Setting	js >>											Quit Help »
<<	< 🗌	> >>																		
\square				6610	6620	6630	6640	6650	6660	6670	6680	6690	6700	6710	6720	6730	6740	6750	6760	677
						AATCACAGAA	ATTTTT CAAC	CATGTAAA	TAAAGAAACA	ԴAA<mark>™</mark>TGTTGAA A	TCATCTTG	GCCTACTTCAG	CTCTTTCCGA	CATTGGGG <mark>*</mark> *	ACMATCCAT	ACATTGATTA	TTTCCAAGGG	TAATCAAA	TTGAACAAA	CAAGTCA
				GAGTCTGTCT1		_														
				GAGTCTGTCTI																
							ATTTT**CAAC													
										AAA∗TGTTGAAA			CTCTTTCC							
										AAA*TGTTGAAA		IGCCTACTTCA								
										AAA*TGTTGAAA		IGCCTACTTCAG	CTCTTTCCGA	ATTGGGG**	АС*АТССАТА	ACATTGATTA	TT*CCAAGGG	ТААТСААА*	TTGAACAAA*(CAAGTCA
										ЭΑА∗ΤGTTGAAA									TTGAACAAA*(CAAGTCA
										AAAATGTTGAAA							TTTCCAAGGG	TAATCAAAA	TTGAACAAA*(CAAGTCA
										AAA*TGTTGAAA										
				GAGTCTGTCTI	TTAGTCCTGG	iaatcacagai	ATTTTT*CAAC	CATGTAAA*	*TAAAGAAACA	AAA*TGTTGAAA	N*TCATCTT6									
		PMC03G51		GAGTCTGTCTI	TTAGTCCTGG	iaatcacagai	ATTTTTTCAAC	CATGTAAA*	*TAAAGAAACA	àAA∗TGTTGAAA			010111000	ioni i uuuu			ITTTCCAAGGG		TTGAACAAAA	CAAGTCA
		WC03G4E									TCATCTTG	igcctact*cag	CTCTT*CCGA							
		PMC03GHF															ITTTCCAAGG*1			
		WC03GPS															TTTCCAAGGG			
		PMC03HG8															TTTCCAAGGG			
+870		WC03G44															TTTCCAAGGG			
	CONSE	NSUS	GG	GAGTCTGTCTI	TTAGTCCTGG	iaatcacagaa	ATTTTT*CAAC	CATGTAAA*	*TAAAGAAACA	AAA×TGTTGAAA	*TCATCTTG	IGCCTACTTCAG	CTCTTTCCGA	ACATTGGGG**	AC*ATCCAT	CATTGATTA	TTTCCAAGGG	TAATCAAA*	TTGAACAAA*(CAAGTCA
						000			(T)	E-11										

000					X Contig Edito	r: +1569	9 F6HIPWC03GWRH	2.213-386.fm5	94				
Cons 2		Qual -1	1	💷 Insert	Edit Modes >>	Cutoffs	Undo Next Search	Commands >>	Settings >>			Quit	Help >>
٠٠	_ ا	>											
			\geq	20	230	240	250	260	270	280	290		3
+1579	F6HI	PWC03	F3ZUW	gaatas	*aaaaatggta	caga*t	atttatagtaa*	tg*ttaatga	taataat¤A	A*CAG*TAATA	*AT*AG*	C*AA	TAG
							atttatagtaa*						
-1681	F6HI	PWC03	HI3K8	aaat*g	*aaaaatggta	caga*t	atttatagtaa*	tg*ttaatga	taataatAA	TAACAG*TAATA	*AT*AG*	C*AA'	TAG
+1685	F6HI	PWC03	GTH2W	aatgaa	aaatggtacag	atattt	atagttgtgtta	atgataacag	taatAATAgo	caa			
				gactaa	atagaaaaatg	gtacag	atatttatagta						
-1577										raacag*taata			
							atatttatagta						
							cagatatttata						
							atatttatagta						
							atatttatagta						
							gtacagatattt						
							tatttatagtaa						
					aatgaaaaatg	gtacag	atatttatagta						
-1631										TAACAG*TAATA			
							atatttatagta						
							atatttatagta						
							atatttatagta						
-1647							atatttatagta						
-1650					gaaaaactcta		tatttatagtaa						
-1652					costocost		tatttatagtaa gatattatagta						
							atatttatagta						
							a×atttatagta						
							atatttatagta						
							atatttatagta						
							atatttatagta						
							atatttatagta						
-1690						5 cocog	acacceatagea			AACAG*TAATA			
\diamond		FNSUS			*AAAAATGGTA	CAGA*T	ATTTATAGTAA*						
							vn;unknown primer '					- /111	

How to close gaps? Closing NGS generated genomes

- SFFfile split 454 MID tags

 Multiple genomes in a single run may be preferable?
- Assembly with Newbler
- Convert ACE format to GAP
- Edit in GAP
 - Examine 'cutoff data' due to high sequence depth
 - Design Primers and Sanger sequence gaps
 - Combine with 'other' NGS datasets for SNP calling

Remember this?

Raw Sequence

Reference Sequence

Tools now available!

PAGIT - Post Assembly Genome Improvement Toolkit

Tools to generate automatically high quality sequence by ordering contigs, closing gaps, correcting sequence errors and transferring annotation.

With the advent of next generation sequencing a lot of effort was put into developing software for mapping or aligning short reads and performing genome assembly. For genome assembly the problem of generating a draft assembly (i.e. a set of unordered contigs) has now been very well addressed - but for users who need high quality assemblies for their analyses there are still unresolved issues: this is where PAGIT is used.

PAGIT addresses the need for software to generate high quality draft genomes. It is based on a series of programs that we developed:

- 1. ABACAS, that is able to contiguate contigs from a de novo assembly against a closely related reference.
- 2. IMAGE, an iterative approach for closing gaps in assembled genomes using mate pair information. It is able to close gaps left open by the assembler in a draft genome, even when using the same data sets as used by the original assembler.
- iCORN, that enables errors in the consensus sequence to be corrected by iteratively mapping reads to the current assembly.
- 4. RATT, a tool to transfer the annotation from a reference genome, or an earlier assembly, onto the latest assembly.

PAGIT bundles these software and makes them more accessible for users.

We have a mailing list for announcements and questions. PAGIT mailing list.

Please note that we submitted a protocol paper that will explain each step of the toolkit. Extra care must be taken, when working with genome bigger than 200mb.

Overview Download ABACAS IMAGE ICORN RATT FAQ

How to Get PAGIT:

We have bundled the four tools together with some other helpful scripts. In the download area they can be downloaded as precompiled versions, or pre-installed on a virtual machine.

CGATGGTTGGA T TG	G TGAATTCG C TGGACGGTGAC
CGATGGTTGGA	G C TGGACGGTGAC
CGATGGTTGGA 🕇 T	CG CTGGACGGTGAC
CGATGGTTGGA T	G C TGGACGGTGAC
CGATGGTTGGA	A TGAATTCG CTGGACGGTGAC
GATGGTTGGA T TG	A TGAATTCGCTGGACGGTGAC

[Genome Research Limited]

Conclusions

• To assemble or to align?

 Largely down to whether you have an acceptable reference sequence

- Which analysis software to use
 - Publicly available? It's free!
 - Commercial? Nice GUIs
- Don't be scared off!
- All of the problems discussed are tractable

What haven't I covered?

- Experimental design
- Sample preparation
 "Rubbish in / Rubbish out"
- How do I extract my useful data?
 - Genome Annotation
 - SNP extraction
- How do I write my Nature paper?
- Take home message:
 - Talk to us BEFORE you design your experiment

Acknowledgements

- Centre for Genomic Research
- Wellcome Trust Sanger Institute
- www.seqanswers.com
 SEQanswers: An open access community for collaboratively decoding genomes
 Bioinformatics (2012)
 doi: 10.1093/bioinformatics/bts128

Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

