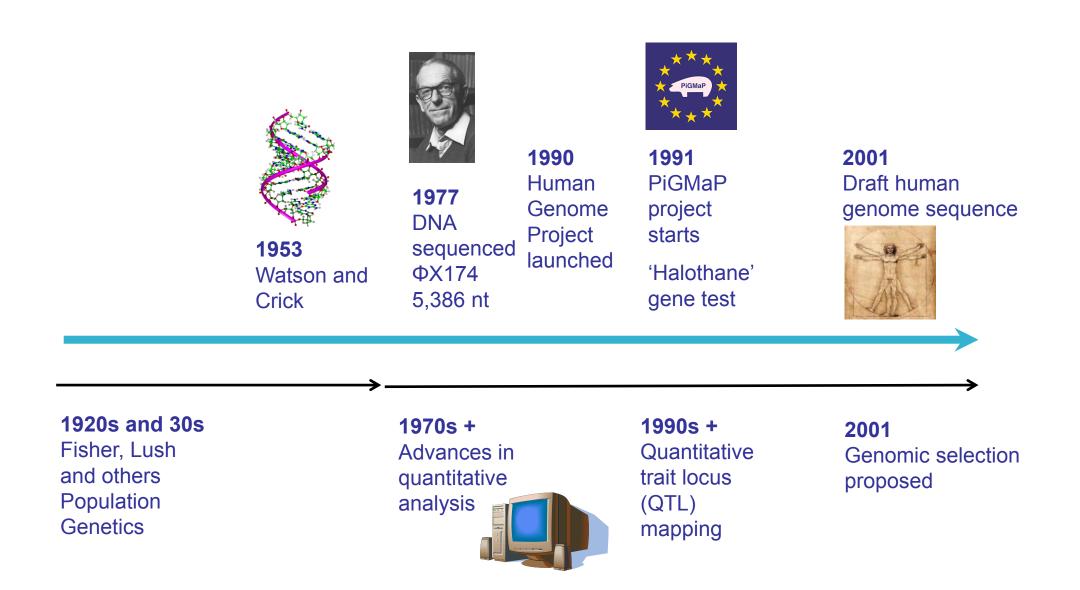
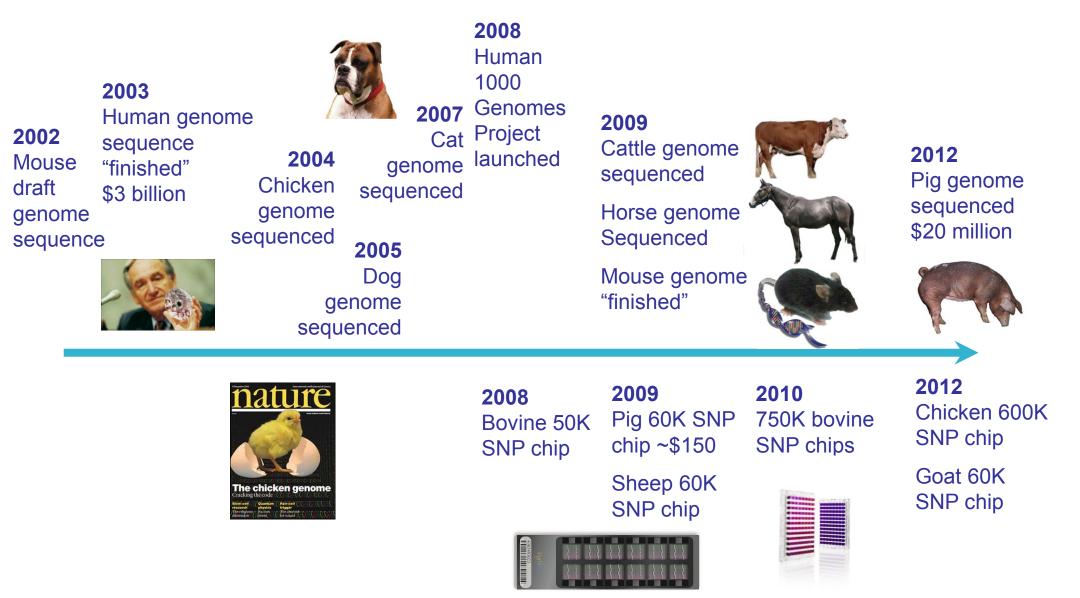
Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

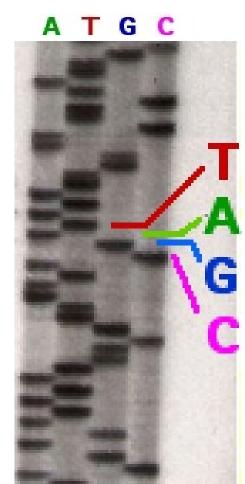
Hosted by the RCVS Charitable Trust


Sequencing animal genomes

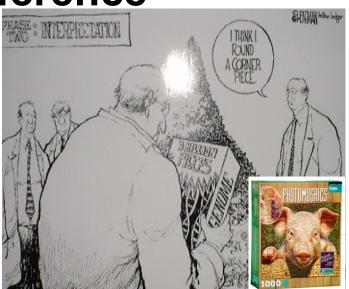

Alan Archibald The Roslin Institute and R(D)SVS University of Edinburgh

A sequenced genome is a requirement for 21st Century biological research

- Pig genome = ~2.7 Gb
- HiSeq2000 generates per run:
 - 600 Gb raw sequence (100 bp PE)
 - i.e. ~ 200x pig genome
 - in ~ 3 x 10⁹ paired pieces
 - 70% expected to pass chastity filter
 - Q score > 20 for full 100 bp
 - But


Generating DNA sequence data is:

- Easier, faster, cheaper
- All DNA sequencing technologies:
 - Generate errors
- Pig nucleus
 - Contains two haploid genomes
 - ~ 1 in 250 nt polymorphic
 - SNPs, indels, CNV



Sequence multiple cloned molecules

- Nested deletions
- 2-300 bp reads
- 5 kbp gene = PhD
- Shotgun approaches
 - 'random' fragmentation
 - high read depth

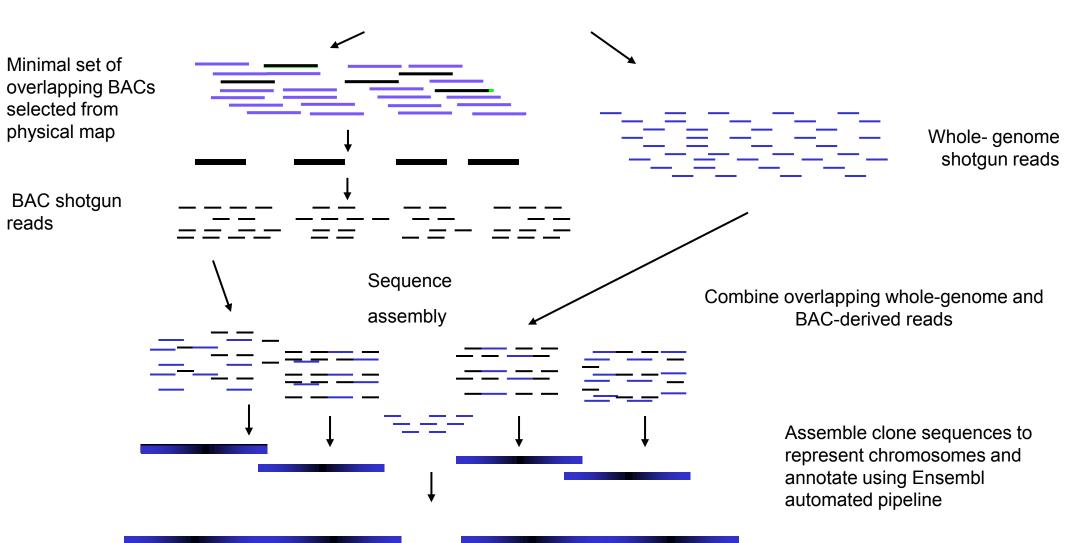
- Sequence assembly is not:
 - Like solving a jigsaw puzzle
 - 40% repetitive DNA sequence
 - cf. cloudless blue sky
- Building a high quality reference genome sequence takes:
 - Time, money, effort

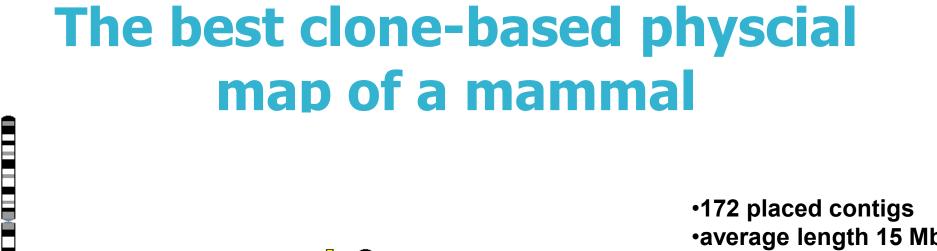
Pig Genome Sequencing Project

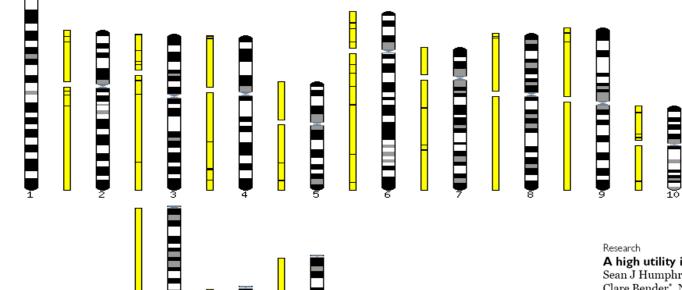
Swine Genome Sequencing Consortium

Comparative and Functional Genomics Comp Funct Genom 2005; 6: 251–255. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.479

Conference Review


Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome


Lawrence B. Schook^{1,2}*, Jonathan E. Beever^{1,2}, Jane Rogers³, Sean Humphray³, Alan Archibald⁴, Patrick Chardon⁵, Denis Milan⁶, Gary Rohrer⁷ and Kellye Eversole⁸



Hybrid Shotgun Sequencing Strategy

16

Ĩ

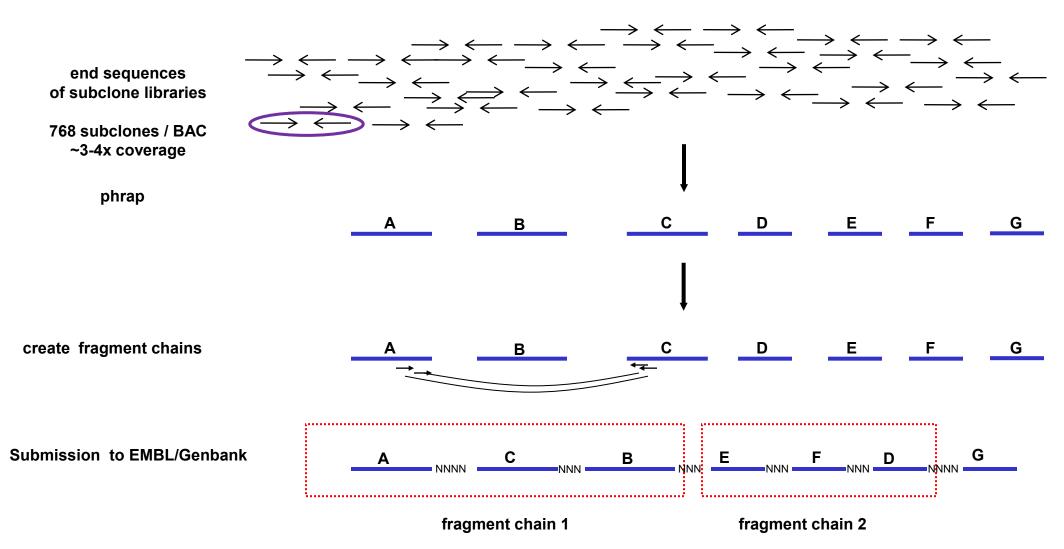
 average length 15 Mb covering 2.58Gb >98% of euchromatin

Humphray et al., 2007. **Genome Biology**

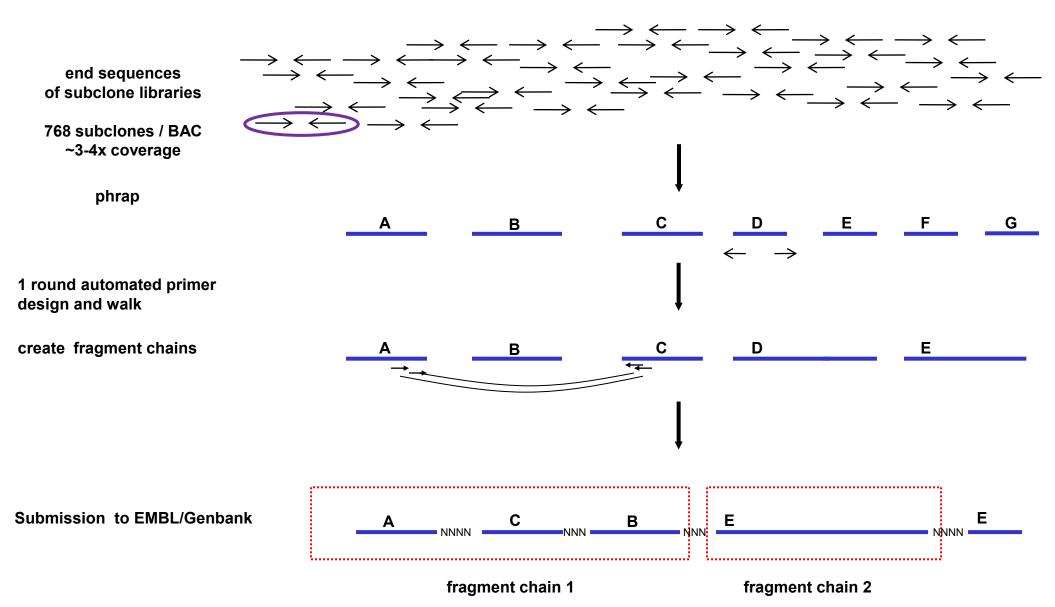
Research

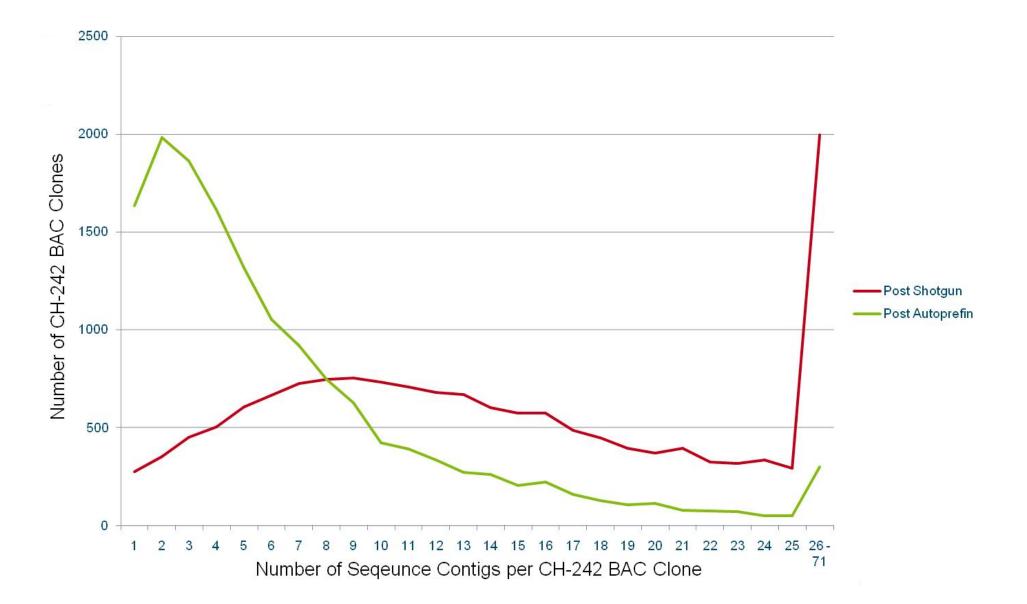
A high utility integrated map of the pig genome

Sean J Humphray*, Carol E Scott*, Richard Clark*, Brandy Marron[†], Clare Bender*, Nick Camm*, Jayne Davis*, Andrew Jenks*, Angela Noon*, Manish Patel*, Harminder Sehra*, Fengtang Yang*, Margarita B Rogatcheva[†], Denis Milan[‡], Patrick Chardon[§], Gary Rohrer[¶], Dan Nonneman[¶], Pieter de Jong[¥], Stacey N Meyers[†], Alan Archibald[#], Jonathan E Beever[†], Lawrence B Schook[†] and Jane Rogers^{*}

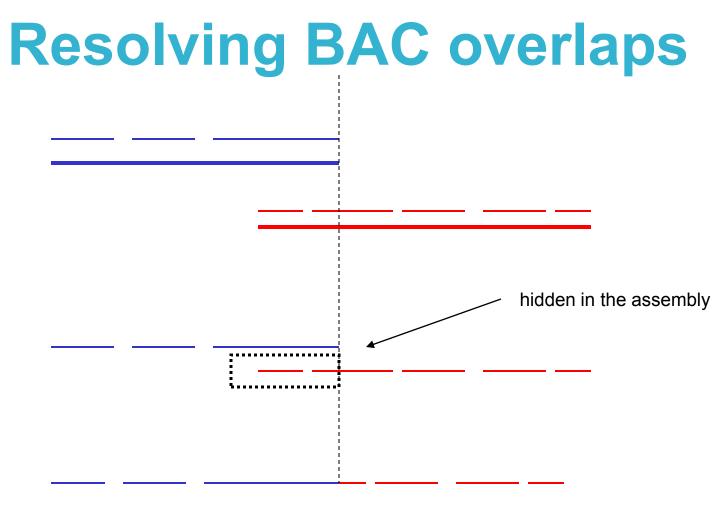

Addresses: 'The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA UK. 'College of Agriculture, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180a USA, 'Laboratoire de Génétique Cellulaire, INRA, 31326 Castanet-Tolosan, France. 'INRA-CEA, Domaine de Vilvert, 78352, Jouy en Josas cedex, France. 'US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE 68933-0166, USA. *Children's Hospital Oakland BACPAC Resources, Oakland, California 94609, USA. *Roslin Institute, Roslin, Midlothian EH25 9PS, UK.

Correspondence: Sean J Humphray. Email: sjh@sanger.ac.uk


Published: 11 July 2007 Genome Biology 2007, 8:R139 (doi:10.1186/gb-2007-8-7-r139) Received: 12 March 2007 Revised: 21 June 2007


Open Access

BAC Contigs / Fragments


BAC Contigs / Fragments

Sequence improvement

	Sequence coverage	Sequence accuracy	Number of sequence contigs	Average contig length bp	Genes with incorrect structures
4x draft sequence	97% (~80Mb missing)	99.99% accurate (1 error in10kbp)	160,000 (7k / chr)	17,000	30%
Improved draft sequence	99% (~32Mb missing)	99.99% accurate (1 error in10kbp)	65,000 (3k / chr)	42,000	5%
Gold standard finished sequence	99.9% (~5Mb missing)	99.999% (1 error in 100kbp)	<200	14,000,000	0%

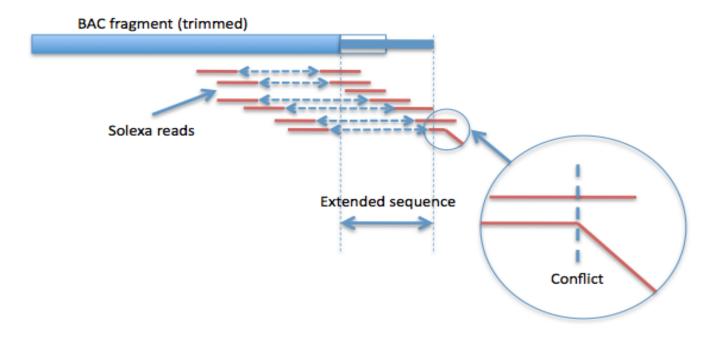
assembled sequence

Add WGS data

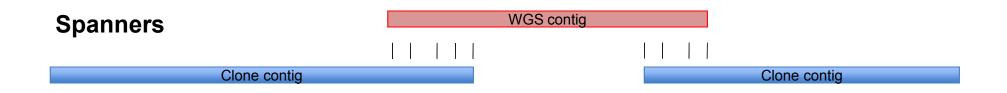
Same Duroc individual as CHORI-242

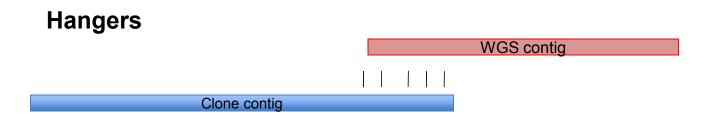
BGI

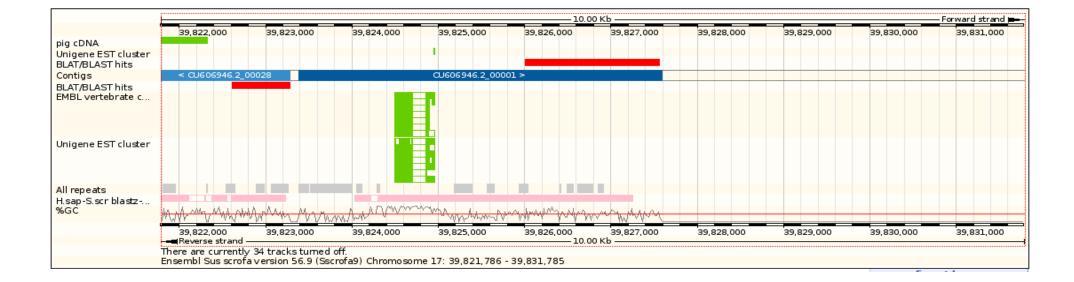
- 66.5 Gb of sequence (24-fold)
- Read length: 44

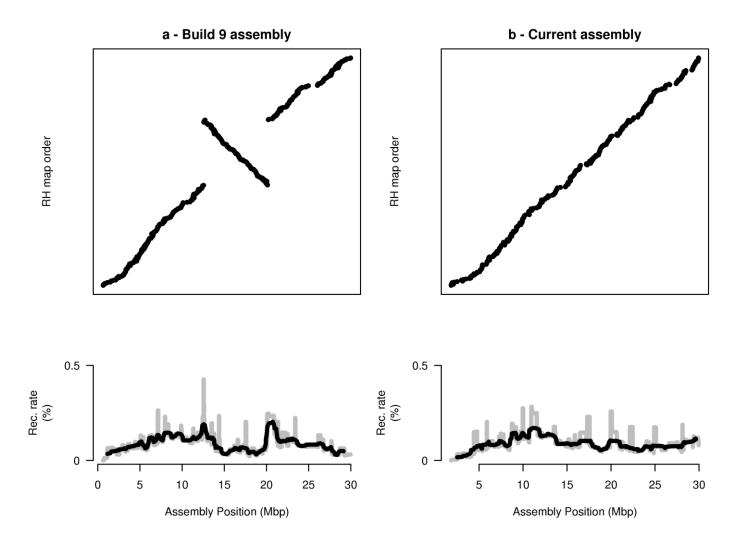

WTSI

- ~40 Gb of sequence (14-fold)
- Read length: 108


Assemblies


- SOAPdeNovo (Shenting Li Pig Genome III Hinxton)
 - 18,409 gaps closed (using reads)
 - 31,359 gaps closed (using scaffolds)
 - 252Mb in new scaffolds (BRCA1 gene)
- Cortex (Caccamo & Iqbal)
 - ~3000 gaps closed use to correct issues within BAC assemblies


Illumina Assembly – using reads


Illumina Assembly – using contigs

Order-orientation Sequence vs RH maps

Annotated assembly in Ensembl

	Login · Register
<i>e</i> Ensembl •	BLAST/BLAT BioMart Tools Downloads Help & Documentation Blog Mirrors
Pig (Sscrofa10.2) 🔽	
About this species	Pig (Sus scrofa)
Genome Statistics Assembly and Genebuild Top 40 InterPro hits Top 500 InterPro hits	Search for: Go e.g. ENSSSCG0000004244 or 7:60107914-60305245 or apoptosis
├ What's New ▣ Sample entry points └ Karyotype	Description
- Location (7:60107914-60305 - Gene (ENSSSCG000000042 - Transcript (ENSSSCT00000	
Variation (rs10719553)	The Sscrofa10.2 assembly of the pig genome was produced in August 2011 by the Swine Genome Sequencing Consortium (SGSC). It consists of 20 chromosomes (1- 18, X and Y) and 4562 unplaced scaffolds. This genome assembly has GCA_000003025.4 as its GenBank assembly accession. The genome assembly represented here corresponds to GenBank Assembly ID GCA_000003025.4
Manage your dataExport data	Download Pig genome sequence (FASTA)
🙀 Bookmark this page	Previous assemblies
	Sscrofa9 (Release 66, Feb2012) 🔽 Go to archive
	Annotation
	Sscrofa10.2 was annotated using a standard Ensembl mammalian genebuild pipeline, incorporating RNA-Seq data provided by the (SGSC). The annotation process is described in this document. When the annotation was completed, the gene set contained the following: 21,640 protein coding genes, 380 pseudogenes and 2,965 ncRNAs.
	Detailed information on genebuild (PDF)
	Ensembl release 67 - May 2012 © WTSI / EBI About Ensembl Privacy Policy Contact Us
	Permanent link - View in archive site
Done	😜 Internet 🔍 100% 🔻

http://www.ensembl.org/Sus_scrofa/Info/Index

Sscrofa10.2 – assembly, genes

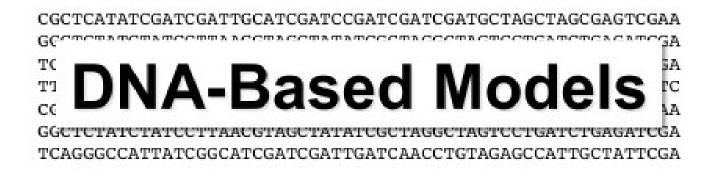
Assembly			Annotation*	
	Placed	Unplaced		
			Protein-coding	21,627
Total length	2,596,639,456	211,869,922	genes:	21,027
Ungapped			Pseudogenes:	380
length	2,323,671,356	195,490,322		
Scaffolds	5,343	4,562	ncRNA genes**:	2,965
Contigs	73,524	168,358	Gene exons:	197,675
Scaffold N50	637,332	98,022	Gene transcripts:	26,487
Contig N50	80,720	2,423		

Data sharing and publication

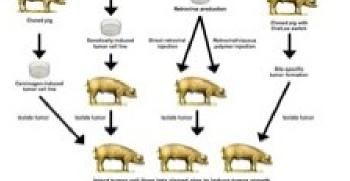
Bermuda agreement

Fort Lauderdale agreement

OPINION	nature	Vol 461 10 September 2009
	OPINION	


Prepublication data sharing

Rapid release of prepublication data has served the field of genomics well. Attendees at a workshop in Toronto recommend extending the practice to other biological data sets.


Pig genomes provide insight into porcine demography, domestication and evolution

Martien A.M. Groenen^{1*}, Alan L. Archibald^{2*}, *Hirohide Uenishi³*, *Christopher K. Tuggle⁴*, Yasu Takeuchi⁵, Max F. Rothschild⁴, Claire Rogel-Gaillard⁶, Chankyu Park⁷, Denis Milan⁸, Hendrik-Jan Megens¹, Shengting Li⁹, Denis Larkin¹⁰, Heebal Kim¹¹, Laurent A. F. Frantz¹, Mario Caccamo¹², Hyeonju Ahn¹¹, Bronwen L. Aken¹³, Anna Anselmo¹⁴, Christian Anthon¹⁵, Loretta Auvil¹⁶, Bouabid Badaoui¹⁴, Craig W. Beattie¹⁷, Christian Bendixen¹⁸, Daniel Berman¹⁹, Frank Blecha²⁰, Jonas Blomberg²¹, Lars Bolund⁹, Mirte Bosse¹, Sara Botti¹⁴, Zhan Bujie¹⁸, Megan Bystrom⁴, Boris Capitanu¹⁶, Denise Carvalho-Silva²², Patrick Chardon⁶, Celine Chen²⁴, Ryan Cheng⁴, Sang-Haeng Choi²⁵, William Chow¹³, Richard C. Clark¹³, Christopher Clee¹³, Richard P.M.A. Crooijmans¹, Harry D. Dawson²⁴, Patrice Dehais⁸, Floravante De Sapio², Bert Dibbits¹, Nizar Drou¹², Zhi-Qiang Du⁴, Kellye Eversole²⁶, João Fadista¹⁸, Susan Fairley¹³, Thomas Faraut⁸, Geoffrey J. Faulkner², Katie E. Fowler²⁷, Merete Fredholm¹⁵, Eric Fritz⁴, James G.R. Gilbert¹³, Elisabetta Giuffra¹⁴, Jan Gorodkin¹⁵, Darren K. Griffin²⁷, Jennifer L. Harrow¹³, Alexander Hayward²⁸, Kerstin Howe¹³, Zhi-Liang Hu⁴, Sean J. Humphray¹³, Toby Hunt¹³, Henrik H. Jensen¹⁸, Patric Jern²⁸, Matthew Jones¹³, Jerzy Jurka²⁹, Hiroyuki Kanamori³⁰, Ronan Kapetanovic², Jaebum Kim^{31,23}, Jae-Hwan Kim³², Kyu-Won Kim³³, Tae-Hun Kim³⁴, Greger Larson³⁵, Kyooyeol Lee⁷, Kyung-Tai Lee³⁴, Richard Leggett¹², Harris A. Lewin³⁶, Yingrui Li⁹, Wansheng Liu³⁷, Jane E. Loveland¹³, Yao Lu⁹, Joan K. Lunney¹⁹, Jian Ma³⁸, Ole Madsen¹, Katherine Mann¹⁹, Lucy Matthews¹³, Stuart McLaren¹³, Takeya Morozumi³⁰, Michael Murtaugh³⁹, Jitendra Narayan¹⁰, Dinh Truong Nguyen⁷, Peixiang Ni⁹, Song-Jung Oh⁴⁰, Suneel Onteru⁴, Frank Panitz¹⁸, Eung-Woo Park³⁴, Hong-Seog Park²⁵, Geraldine Pascal⁴¹, Yogesh Paudel¹, Miguel Perez-Enciso⁴², Ricardo Ramirez-Gonzalez¹², James M. Reecy⁴, Sandra Rodriguez-Zas⁴³, Gary A. Rohrer⁴⁴, Lauretta Rund⁴³, Yongming Sang²⁰, Kyle Schachtschneider⁴³, Joshua Schraiber⁴⁵, John Schwartz³⁹, Linda Scobie⁴⁶, Carol Scott¹³, Stephen Searle¹³, Bertrand Servin⁸, Bruce R. Southey⁴³, Goran Sperber⁴⁷, Peter Stadler⁴⁸, Jonathan Sweedler⁴⁹, Hakim Tafer⁴⁸, Bo Thomsen¹⁸, Rashmi Wali⁴⁶, Jian Wang⁹, **Jun Wang⁹**, Simon White¹³, Xun Xu⁹, Martine Yerle⁸, Jianguo Zhang⁹, Guojie Zhang⁹, Jie Zhang⁵⁰, Shuhong Zhao⁵⁰, Jane Rogers¹², Carol Churcher¹³ and Lawrence B. Schook⁵¹.

Pig Genome Sequence Project: A Blueprint for Agriculture, Life and Biomedical Sciences

AGRICULTURAL SCIENCES Genotypes and Phenotypes BIOMEDICAL SCIENCES Designing Cancer Models LIFE SCIENCES Mechanisms of Mammalian Evolution and Diversity

Acknowledgements - funding

Funding Source	Funding Level	Activity Supported
CSREES USDA	\$10,000,000	Clone shotgun sequencing
USDA – ARS	\$1,000,000	Clone shotgun sequencing
N Carolina Agric Res Service	\$50,000	Sequencing
Iowa State University	\$200,000	Targeted sequencing
USA National Pork Board	\$750,000	WGS sequencing
Iowa Pork Producers Assn.	\$100,000	Targeted Sequencing
N. Carolina Pork Council	\$100,000	Sequencing
EU SABRE Project	€1,600,000	6X of SSC7 & SSC14
Danish government/BGI	€600,000	Next-gen seq WGS
INRA Genescope, France	€1,000,000	SNP discovery (1 million reads)
BBSRC, UK	£2,000,000	Annotation, analysis; SSCX/Y
Wellcome Trust Sanger Institute	£1,600,000	Contribution to read costs
Wellcome Trust Sanger Institute	£300,000	Finish ENCODE + MHC
Dutch IPG	€600,000	6X of SSC4
Japan	£10,000	35 SSC7 clones
Korea	0.5 million reads	WGS sequencing

Genomics-enabled tools

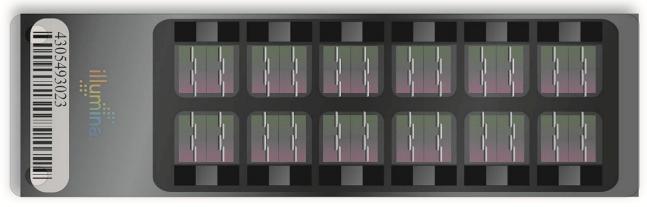
ROSLIN

Reference genome sequence as a key resource and framework for biological research

- Genetics
 - Variation (SNPs, indels, CNVs)
 - SNP chips, Genotype-by-Sequence
 - Genome-Wide Association Studies (GWAS)
 - Genetic improvement
- Functional genomics
 - incl. physiology, immunology,.....
 - Genome-wide analysis of responses to perturbation
 - Gene expression, methylation,
 - Microarrays, Assay-by-sequence

HIGH DENSITY SNP GENOTYPING CHIP

OPEN O ACCESS Freely available online


August 2009

🍥 PLoS one

Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology

Antonio M. Ramos¹, Richard P. M. A. Crooijmans¹, Nabeel A. Affara², Andreia J. Amaral¹, Alan L. Archibald³, Jonathan E. Beever⁴, Christian Bendixen⁵, Carol Churcher⁶, Richard Clark⁶, Patrick Dehais⁷, Mark S. Hansen⁸, Jakob Hedegaard⁵, Zhi-Liang Hu⁹, Hindrik H. Kerstens¹, Andy S. Law³, Hendrik-Jan Megens¹, Denis Milan⁷, Danny J. Nonneman¹⁰, Gary A. Rohrer¹⁰, Max F. Rothschild⁹, Tim P. L. Smith¹⁰, Robert D. Schnabel¹¹, Curt P. Van Tassell¹², Jeremy F. Taylor¹¹, Ralph T. Wiedmann¹⁰, Lawrence B. Schook⁴, Martien A. M. Groenen^{1*}

 Wageningen University, Animal Breeding and Genori Kingdom, 3 Division of Genetics and Genomics, The R Kingdom, 4 Institute for Genomic Biology, University Denmark, 6 The Wellcome Trust Sanger Institute, TI Cellulaire, Castanet Tolosan, France, 8 Illumina, Inc., S

Multiple genomes

- Human 1000 Genomes Project
 - ~4-6x coverage / individual
 - revealing genetic burden
 - ~1-200 potential Loss of Function mutations per person
- Human genetics studies
 - 10's of thousands per study
 - ICQG 2012

30K sequenced genomes in a study

Multiple animal genomes

Pooled samples

- 10-15x coverage
- Chickens, cattle, pigs,
- SNP discovery
- Signatures of selection
- Signatures of domestication
- Individual genomes
 - 4-10x coverage
 - £1,000 per genome

Multiple animal genomes

- 1000 Bull Genomes Project
 - Collaborative, Cloud data repository
 - Nnn bulls, average coverage ~11x
 - Data analysis cycles for genomic prediction
- Pigs
 - Groenen (Wageningen) ~300 individual pigs
 - Korean ~60 individual pigs
 - China ?? pigs

Gene Expression Microarray

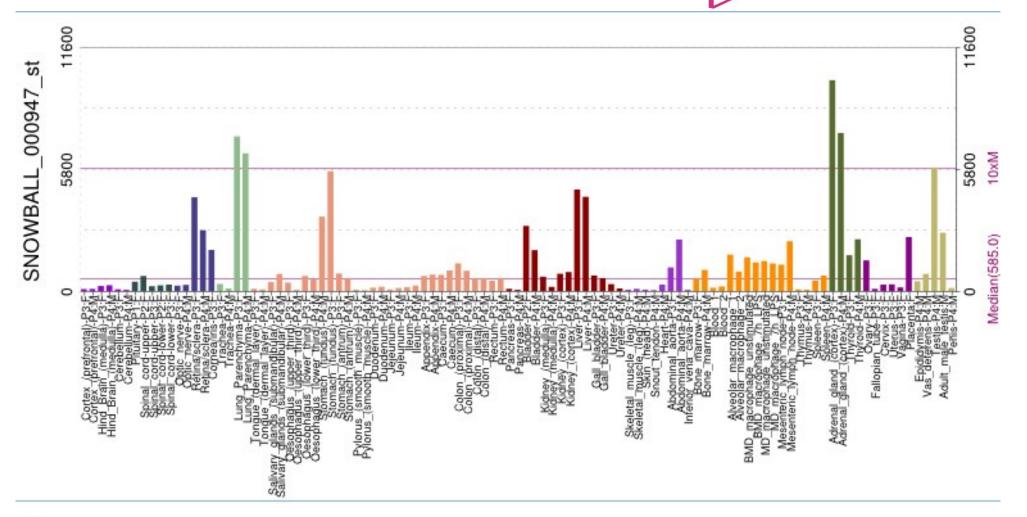
Gene Expression Atlas of the Pig

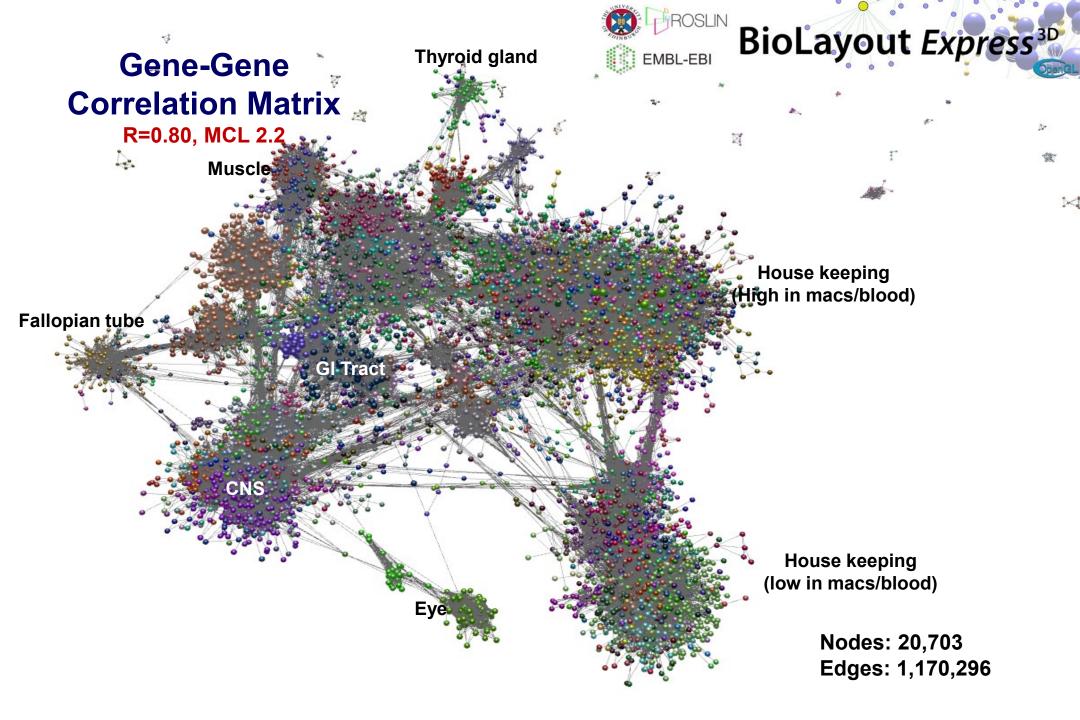
Expression array, atlas

- Tool for monitoring gene expression
- Inferring function of unknowns
 - Inform genome annotation
- Comparative functional genomics
 - Is pig kidney more/less like human kidney than mouse kidney?
- Current arrays
 - Poorly annotated

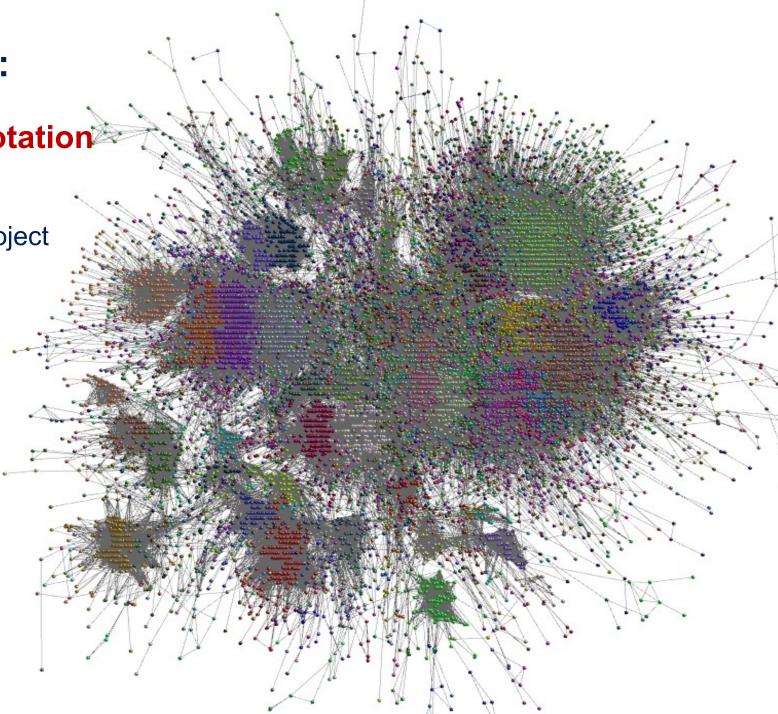
- Content elderly (e.g. Affymetrix 2004 design)

Affymetrix Porcine Snowball Array content


- 123 Affy controls
- 35 virus genomes (tiled 17 bp spacing)
- 1,857 miRNA probes
- 37 MT-mRNA
- 45,927 mRNA
 - 37,842 with annotation
 - 6,767 LOC annotations
 - 16,626 unique genes with official symbol/description


Expression profiles

http://biogps.org


Those involved:

Tom Freeman Array design/annotation

Fios Genomics Chris Tuggle Sanger Pig genome project Affymetrix Inc. Dario Beraldi

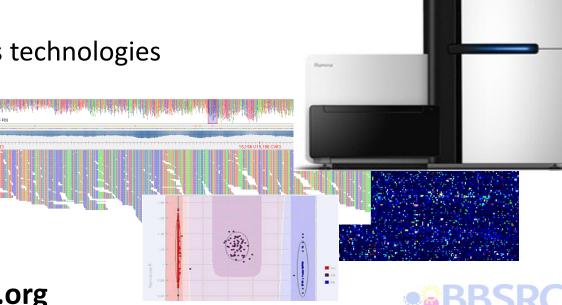
Tissue Atlas

David Hume Alan Archibald Mark Barnett Kenny Bailie Ronan Kapetanovic Kim Summers Lynsey Fairbairn Andru Tomoiu ARK-Genomics

Roslin's contribution

- Leadership
 - PiGMaP, ChickMap,SABRE, Quantomics, 3SR,...
 - SGSC, ISGC,...
- Genome sequence data
 - De novo: sheep (70x)
 - Re-sequence: pig, cattle, chicken
- Analysis, annotation (Ensembl)
 - Chicken, cattle, turkey,...pig,...
- SNP chip development
 - Pig, cattle, chicken, salmon,
- Microarray (ARK-Genomics)
 - cDNA to Affymetrix Snowball

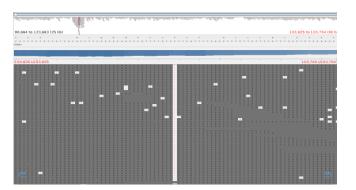
ARK-GENOMICS



- ARK-Genomics
 - High-throughput facility focusing on genetics and genomics
 - BBSRC National Capability based at The Roslin Institute
 - Collaborators on every continent
 - Offering research, collaborations and service provision
 - Investing in the latest genomics technologies
 - Sequencing
 - Genotyping
 - Transcriptomics
 - Comparative Genomics
 - Bioinformatics

http://www.ark-genomics.org

Centre for Comparative & Functional Genomics


Technologies

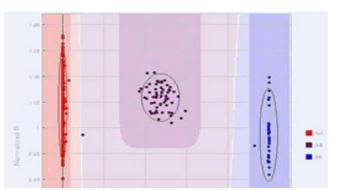
DNA Sequencing

Illumina Sequencing

- Up to 150bp paired
- Novel genomes
- Resequencing
- RNA-Seq
- ChIP-Seq
- Epigenetics

Illumina HiSeq 2000 Illumina GAIIx Sanger 3730

Genotyping

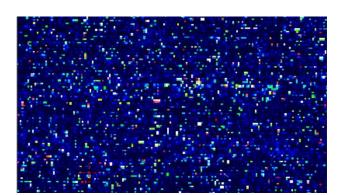

Illumina - from HD to

custom chips

- iScan, Inifinium
- BeadXpress, Goldengate
- BeadChip

Affymetrix

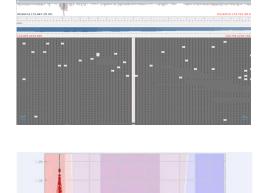
- GeneTitan, Axiom
- Process 96 arrays / run

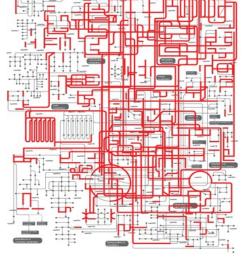

Microarrays

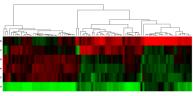
Gene Expression

- Affymetrix
- Agilent
- Illumina
- Whole genome
- Exon-level
- microRNA

CGH, ChIP-Chip, MeIP


• Nimblegen




ARK-Genomics Centre for Comparative & Functional Genomics

Examples of Current research

- Genome (re)sequencing
 - Sheep genome with BGI
 - 21 chicken genomes
 - With IAH: disease resistance
 - With breeders: design SNP chip
 - Bacterial genomics
- Functional genomics
 - Host-pathogen interactions, gene regulation, transcription factor binding, microRNAs, epigenetics
- Metagenomics
 - Gut microbiome: : the "forgotten organ"
 - Ruminants, chickens, others

Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

