Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

Problems and pitfalls. Closing genomes, informatics, and errors

Ian Goodhead; Alistair Darby and Neil Hall

Conclusions

- Don't be scared off!
- Probably only applicable to smaller genomes
- All of the problems discussed are tractable
- Take home message:
 - Talk to us BEFORE you design your experiment

Outline

Basic concepts in genome sequencing and assembly

- Alignment and assembly of next-generation sequencing data
- Sources of error in assemblies
 - Repeats
 - Sequencing errors

How do you assemble a genome?

Sequencing Reads

Genome

To align or to assemble?

- Mapping / Alignment
 - Useful if you have a reference
 - Closely related
 - High quality (i.e. "finished")
- Useful for various applications:
 - RNA-seq
 - ChIP-seq
 - Methyl-seq
 - CNV-seq
 - SNP identification

Raw Sequence

Reference Sequence

Which alignment algorithm should I use?

BFAST - Blat-like Fast Accurate Search Tool. Written by Nils Homer, Stanley F. Nelson and Barry Merriman at UCLA. Bowtie - Ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome at a rate of 25 million reads BWA - Heng Lee's BWT Alignment program - a progression from Maq. BWA is a fast light-weighted tool that aligns short sequences to a sequence ELAND - Efficient Large-Scale Alignment of Nucleotide Databases. Whole genome alignments to a reference genome. Written by Illumina author Exonerate - Various forms of pairwise alignment (including Smith-Waterman-Gotoh) of DNA/protein against a reference. Authors are Guy St C Sla GenomeMapper - GenomeMapper is a short read mapping tool designed for accurate read alignments. It quickly aligns millions of reads either v GMAP - GMAP (Genomic Mapping and Alignment Program) for mRNA and EST Sequences. Developed by Thomas Wu and Colin Watanabe at Ger gnumap - The Genomic Next-generation Universal MAPper (gnumap) is a program designed to accurately map sequence data obtained from nex MAQ - Mapping and Assembly with Qualities (renamed from MAPASS2). Particularly designed for Illumina with preliminary functions to handle A MOSAIK - MOSAIK produces gapped alignments using the Smith-Waterman algorithm. Features a number of support tools. Support for Roche FL MrFAST and MrsFAST - mrFAST & mrsFAST are designed to map short reads generated with the Illumina platform to reference genome assemblie MUMmer - MUMmer is a modular system for the rapid whole genome alignment of finished or draft sequence. Released as a package providing Novocraft - Tools for reference alignment of paired-end and single-end Illumina reads. Uses a Needleman-Wunsch algorithm. Can support Bis-Se PASS - It supports Illumina, SOLID and Roche-FLX data formats and allows the user to modulate very finely the sensitivity of the alignments. Space RMAP - Assembles 20 - 64 bp Illumina reads to a FASTA reference genome. By Andrew D. Smith and Zhenyu Xuan at CSHL. (published in BMC Bio SeqMap - Supports up to 5 or more bp mismatches/INDELs. Highly tunable. Written by Hui Jiang from the Wong lab at Stanford. Builds available SHRIMP - Assembles to a reference sequence. Developed with Applied Biosystem's colourspace genomic representation in mind. Authors are Mi Slider- An application for the Illumina Sequence Analyzer output that uses the probability files instead of the sequence files as an input for alignr SOAP - SOAP (Short Oligonucleotide Alignment Program). A program for efficient gapped and ungapped alignment of short oligonucleotides onto SSAHA - SSAHA (Sequence Search and Alignment by Hashing Algorithm) is a tool for rapidly finding near exact matches in DNA or protein databa SOCS - Aligns SOLiD data. SOCS is built on an iterative variation of the Rabin-Karp string search algorithm, which uses hashing to reduce the set o SWIFT - The SWIFT suit is a software collection for fast index-based sequence comparison. It contains: SWIFT — fast local alignment search, guar SXOligoSearch - SXOligoSearch is a commercial platform offered by the Malaysian based Synamatix. Will align Illumina reads against a range of Re Vmatch - A versatile software tool for efficiently solving large scale sequence matching tasks. Vmatch subsumes the software tool REPuter, but is Zoom - ZOOM (Zillions Of Oligos Mapped) is designed to map millions of short reads, emerged by next-generation sequencing technology, back to

http://seqanswers.com/forums/showthread.php?t=43

Assembling 'short' NGS reads

- Required if no reference sequence available
- Typically uses very high coverage of short read data (eg. 50 150bp reads)

- Sometimes interspersed with longer reads

- Useful for various applications:
 - *de novo* genomics
 - *de novo* transcriptomics
 - CNV-seq
 - SNP identification
- Requires some heavy-duty computing

Which assembly algorithm should I use?

- * ABySS Assembly By Short Sequences. ABySS is a de novo sequence assembler that is design
- * ALLPATHS ALLPATHS: De novo assembly of whole-genome shotgun microreads. ALLPATHS is
- * Edena Edena (Exact DE Novo Assembler) is an assembler dedicated to process the millions of
- * EULER-SR Short read de novo assembly. By Mark J. Chaisson and Pavel A. Pevzner from UCS
- * MIRA2 MIRA (Mimicking Intelligent Read Assembly) is able to perform true hybrid de-novo
- * SEQAN A Consistency-based Consensus Algorithm for De Novo and Reference-guided Seque
- * <u>SHARCGS</u> De novo assembly of short reads. Authors are Dohm JC, Lottaz C, Borodina T and
- * <u>SSAKE</u> The Short Sequence Assembly by K-mer search and 3' read Extension (SSAKE) is a get
 * <u>SOAPdenovo</u> Part of the SOAP suite. See above.
- * VCAKE De novo assembly of short reads with robust error correction. An improvement on e
- * Velvet Velvet is a de novo genomic assembler specially designed for short read sequencing

http://seqanswers.com/forums/showthread.php?t=43

The problem of repeats

De-novo Assembly

- Assembled reads: 702,562
- Total number of contigs: 7,261

NGS Alignment

Annotated Reference Sequence

- 102 of the gaps in mapped sequence due to 975bp-long IS elements
- Equates to ~3% genome

Homopolymer Errors

454 Mate Pairs

• Insert size 3 kb, 8 kb & 20 kb

Complementary Technologies?

The positions of the gaps differ between the two technologies:

Entry: [🗹 SS_CDS.tab	🗹 SS_v_4549	5denovo_gap	s_modified.ta	ab 🗹 SS_v_4	54mapped_ga	ps.tab 🗹 S	S_v_3730_gaps	.tab					
SSU043	77 SSII0480 32		0 02 SSU049	→ DD 4 5 96 - SSU0						NAN CONTRA			BAR SUCSSUCSE	
		Þ			Þ								DD.	
		<u>misc_</u> feat	ure		misc_f	eature				_			<u>r_</u> misc_1	feature
											>			
		misc_feat	ure		D					mi	sc_feature	•	misc_fe	ature
					V.	V I								
M1SC_T	reature isc_te	ature misc_te	eature		misc_reatur	re misc_teat	ure misc_t	eature			misc_teature	M1SC_T	eature	M1SC_
507000	513500	520000	526500	533000	539500	546000	552500	559000	565500	572000	578500	585000	591500	5980
	_	<u> </u>	<u> </u>	L			<u> </u>	<u> </u>		—				<u> </u>
4	44					10								
SSU0474 j	SSUG	0484 SU⊨ SS	500492	SSU0497	550050	BA 5 SSU	0511 13				SSU0552	56	SSU0562 565	

Schematic showing the positions of the gaps present in the different assemblies.

Shotgun Sequencing

How to close gaps? Closing NGS generated genomes

- SFFfile split 454 MID tags
 - Multiple genomes in a single run may be preferable?
- Assembly with Newbler
- Convert ACE format to GAP
- Edit in GAP

0	00								X Contig	g Editor: +533 F	5HIPWC03GX	17M								
	Cons 2	-	Qual -1 🛔	🔄 Insert Edit Mod	les »> 📃 Cutof	fs Undo Next :	Search Comman	nds »> Settings »>	·											Quit Help >
	_	<	> >>																	
4				6610	6620	6630	6640	6650	6660	6670	6680	6690	6700	6710	6720	6730	6740	6750	6760	677
	+5557	cont	ig00058.ac	GGAGTCTGTCT1	TAGTCCTGG	AATCACAGAA	TTTTT <mark>×</mark> CAAC	CATGTAAA×TA	AAGAAAC	AAA×TGTTGAAA	*TCATCT1	GGCCTACTTCA	IGCTCTTTCCGF	CATTGGGG	AC*ATCCAT	ACATTGATTA	TTTCCAAGGG	ТТААТСААА	TTGAACAAA	CAAGTCA
	-706	F6H1	PWC03G3JD0	GGAGTCTGTCT1	TAG	_														
	-1056	F6H1	PWC03GTTGF	R GGAGTCTGTCT1	TAGTCCTGG	9														
	-682	F6H1	PWC03GGYNO	GGAGTCTGTCT1	TAGTCCTGG	AATCACAGAA	TTTT**CAAC	CATGTAAA*TAI	AAGAA											
	-673	F6H1	PWC03GXG7f	GGAGTCTGTCT	TAGTCCTGG	AATCACAGAA	TTTTT*CAAC	CATGTAAA*TA	AAGAAAC	AAA*TGTTGAAA	*TCATCT1	GGCCTACTTCA	GCTCTTTCC							
	-856	F6H1	PWC03GD70	GGAGTCTGTCT	TAGTCCTGG	AATCACAGAA	TTTTTCAAC	CATGTAAA*TA	AAGAAACI	AAA*TGTTGAAA	*TCATCT1	GGCCTACTTCA								
	+705	F6H1	PWC03GW4M0	GGAGTCTGTCT	TAGTCCTGG	AATCACAGAA	TTTTT*CAAC	CATGTAAA*TA	AAGAAACI	AAA*TGTTGAAA	ATCATCTI	GGCCTACTTCA	IGCTCTTTCCGF	CATTGGGG **	AC*ATCCAT	ACATTGATTA	TT*CCAAGGG	TTAATCAAA*	TTGAACAAA*	CAAGTCA
	+854	F6H1	PWC03F6YL2	2 GGAGTCTGTCT1	TAGTCCTGG	AATCACAGAA	TTTTT*CAAC	CATGTAAA*TA	AAGAAACI	AAA*TGTTGAAA	*TCATCT1	GGCCTACTTCA	IGCTCTTTCCGF	CATTGGGG **	AC*ATCCAT	ACATTGATTA	TTTCCAAGGG	TTAATCAAA*	TTGAACAAA*	CAAGTCA
	-1054	F6H1	PWC03F55WF	GGAGICIGICI	TAGICCIGG	ALCACAGAA		CATGIAAAAIA	AAGAAACI	AAAATGIIGAAA	*ICAICII	GGCCTACTICA	IGCTCTTTCCGF	CATTGGGG**	AC*AICCAI	ACALIGATIA	TTTCCAAGGG	TTAATCAAAA	I I GAACAAA*I	CAAGICA
	-590	FPHT	PWC03HAV96		TAGICCIGG	HATCACAGAA			AAGAAACI	AAA*IGIIGAAA	*ICAICII	GULTAUTTUR			AC*ATCCAT	ACATTGAT				
	-8/1	FPHT	PWC03HJUJ		TAGICUIGG	HAICACAGAA			AAGAAAC	AAA*IGIIGAAA	*ILAILII HTCATCTI	GULLIALIILA			AC*AILLAI	ACATIGAT	TTTOOAACCO	TTAATCAAAA	TTOAACAAAA	CAACTOO
	-1141	FOHI	PWUV3G5TRF		ՈՅՅՈՆԵՐԵՆ	ННІСНСНОНН	IIIIICHHU	CHIGIHHH*IH	HHUHHHU	ннн*таттаннн	*IUHIUII				HU*HIUUHI	HUHIIGHIIH		TTAATCAAA		CAACTCA
	-1097	FOHI	PHEV304E94	t							ICHICII	GOLL THU TO CH	lat I t I I ≊ttak		ACCATCCAT			TTAATCAAA*		CAACTCA
	+707	LCUI	DUCASCOEU	-										CCCCC	ACMATCCAT		TTTCCAACCC	TTAATCAAA*		CAACTCA
	+917	E C L L L L L L L L L L L L L L L L L L	PMCV30P3HC	*										*00000*		ΑΓΑΤΤΩΗΤΤΗ		TTAATCAAA*		CAAGTCA
	+970	FGHI	PHCOSHUOPIL	S.										00000*		οραττράττα		TTAATCAAA*	TTGAACAAA¥I	CAAGTCA
	. 37 0	CONG	FNSUS	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	00T11T0AT	алгагадаа		сатотааа*та	AAGAAAC	AAA*TGTTGAAA	*ТГАТГТ		GCTCTTTCCG	CATTGGGG**	TA11TA*16	CATTGATTA	TTTCCAAGGG	TTAATCAAA*	TIGAACAAA*	CAAGTCA
		00110	211000	undrendren	marceraa	intendini	i i i i i i i i i i i i i i i i i i i				Tonton	ducernerrer			no mooni		in reconnudu			march

000				X Contig Edi	tor: +156	9 F6HI	PWC03GWKH2	2.213-386.fm5	94					
Cons 2 🛔	Qual -1	*	💷 Insert	Edit Modes >>	Cutoffs	Undo	Next Search	Commands >>	Settings >>			Quit	Help	>>
<< <		»> [\triangleleft											
			20	230	240		250	260	270	280	290		3	
+1579 F6	HIPWC03F:	3ZUW	gaatag	*aaaaatggt	acaga*t	attt	atagtaa*t	tg*ttaatga	taataat	A*A*CAG*TAATA	+AT+AG+0	C*AA	TAG	
+1664 F6	HIPWC03F	¥SED	gaat*g	*aaaaatggt	acaga*t	attt	atagtaa*t	tg*ttaatga	taataatA	ATAACAG*TAATA	*AT*AG*(:*AA	TAG	
-1681 F6	HIPWC03H	I3K8	aaat*g	*aaaaatggt	acaga*t	attt	atagtaa*t	tg*ttaatga	taataatA	ATAACAG*TAATA	+AT*AG*0	XAA*	TAG	
+1685 F6	HIPWC03G	TH2W	aatgaa	aaatggtaca	gatattt	atag	ttgtgttaa	atgataacag	taatAATA	gcaa				
-1574 F6	HIPWC03G	мкзх	gactaa	atagaaaaat	ggtacag	atat	ttatagtaa	<u>at</u> gttaatga	taataatA	ATAACAG*TAATA)*AT*AG*(∶*AA	TAG	
-1577 F6	HIPWC03H	E4K7						gttaatga	taataatA	ATAACAG*TAATA)*AT*AG*(;×AA	TAG	
+1584 F6	HIPWC03G	WH6N	tagact	gaatgaaaat	ggtacag	gatat	ttatagtaa	atgttaatga	taataatA	ATAACAG×TAATA	h*AT*AG*(C*AA	TAG	
+1589 F6	HIPWC03G	JCHX	atagac	tgaatagaaa	aatggta	icaga	tatttatag	gtaatgttaa	tgatattA	ATAACAG*TAATA	A*AT*AG*(:*AA	TAG	
-1601 F6	HIPWC03G	QOM3	agactg	aatgaaaaat	ggtacag	gatat	ttatagtaa	atgttaatga	taataatA	ATAACAG*TAATA	h*AT*AG*(:*AA	TAG	
-1611 F6	HIPWC03G	XKRV	agactg	aatgaaaaat	ggtacag	gatat	ttatagtaa	atgttaatga	taataatA	ATAACAG×TAATA	N*AT*AG*(C*AA	TAG	
-1620 F6	HIPWC03G	K6WW	tgctat	agactgaatg	aaaaatg	gtac	agatattta	atagtaatga	taataatA	ATAACAG*TAATA	N*AT*AG*(C*AA	TAG	
-1623 F6	HIPMC03H	EXFK	gggata	agaaaaactc	taacaga	itatt	tatagtaat	tgttaattga	taataatA	ATAACAG*TAATA	A*AT*AG*(:*AA	TAG	
+1629 F6	HIPWC03F:	1SJ5	agacta	aatgaaaaat	ggtacag	gatat	<u>ttata</u> gtaa	atgttaatga	taataat	ATAACAG*TAATA	ANAT NAGNO	C*AA	TAG	
-1631 F6	HIPWC03G	6WF J					gtaa	atgttaatga	taataatA	ATAACAG*TAATA	A*AT*AG*C	:*AA	TAG	
-1638 F6	HIPMC03H	AP4W	tagact	gaatgaaaat	ggtacag	atat	ttatagtaa	atgttaatga	taataatA	ATAACAG*TAATA	A*AT*AG*(:*AA	TAG	
+1641 F6	HIPWC03F		tagact	aaatgaaaat	ggtacag	atat	ttatagtaa	atgttaatga	taataat	ATAACAG*TAATA	A*AT*AG*(*AA	TAG	
+1645 F6	HIPWC03G	OFBR	agactg	aatgaaaaaat	ggtacag	atat	ttatagtaa	atgttaatga	tgataat	ATAGCAG*TAATA	1*A1 *AG*(*AA	TAG	
-1647 F6	HIPWC03H	MOPF	agactg	aatgaaaaaat	ggtacag	atat	ttatagtaa	atgttaatga	taataat	ATAACAG*TAATA	1*A1 *AG*C	XAA	TAG	
-1649 F6	HIPWC03FI	P389		gaaaaactct	aacagaa	itatt	tatagtaat	lgttaattga	taataat	ATAACAG*TAATA	I*ATAAG*U	*AA	TAG	
-1650 F6	HIPWC03H	U2XG			cagaa	itatt	tatagtaat	lgttaattga	taataat	ATAACAG*TAATA	1*AT *AG*U	PA*	TAG	
-1652 F6	HIPWC03G			gaataaaaa	tggtaca	igata	ttatagtaa	atgttaatga	taataat	HIHHUHU*IHIII	1*H1 *HG*U	,*HH	THU	
-1661 F6	HIPWCV3F		agactg	aatgaaaaaat	ggtacag	atat	ttatagtaa	atgttaatga	taataat	HIHHUHU*IHHII	I*HI *HG*U	,*HH	THU	
-1670 F0	HIPWCV3F	COON	agactg	aatgaaaaat	ggtacag	¦a*at	ttatagtaa	atgttaatga	taataat	ATAACAC*TAAT		-**HH	TAG	
-1697 56	HIPWC03H	TCOC	agacta	aatgaaaaat	ggtacag	gatat	ttatagtaa	atgttaatga	taataat	ATAACAC * TAATA	I*HI*HU*U N×AT×AC×(×00	TAG	
-1699 56	HIPHC030	DECA	agacta	aatgaaaaat	ggtacag	atat	ttatagtaa	atgitaatga	taataat	ATAACAC _* TAAT		,≂нн `∡∆∆	TAC	
-1000 FG	UTDUCOOL		agactg	aatgaaaaat	ggtacag	atat	ttatagtaa	atgttaatga	taataat			200 220	TAC	
-1690 F6	HTDHC03H	E TYC	Lagact	gaatgaaaat	ggtacag	acat	ttatagtaa	tgttaatga	teateat			COO	TAG	
<> 1030 F0	NSENSUS	510	GOOTHG	TOTTOODA		ATT	ATAGTAG		ΤΔΑΤΔΑΤΔ	ATAACAG*TAATA	ATRACE	`#66	TAG	
·/	10211303		unn1 "u	- mininini du i	nonun• i		in norma	i un rinni un	mannann	in inclue infiniti	in nunununun	nn	mu	PZ.

How to close gaps? Closing NGS generated genomes

- SFFfile split 454 MID tags

 Multiple genomes in a single run may be preferable?
- Assembly with Newbler
- Convert ACE format to GAP
- Edit in GAP
 - Examine 'cutoff data' due to high sequence depth
 - Design Primers and Sanger sequence gaps
 - Combine with 'other' NGS datasets for SNP calling

Remember this?

Raw Sequence

Reference Sequence

Tools now available!

PAGIT - Post Assembly Genome Improvement Toolkit

Tools to generate automatically high quality sequence by ordering contigs, closing gaps, correcting sequence errors and transferring annotation.

With the advent of next generation sequencing a lot of effort was put into developing software for mapping or aligning short reads and performing genome assembly. For genome assembly the problem of generating a draft assembly (i.e. a set of unordered contigs) has now been very well addressed - but for users who need high quality assemblies for their analyses there are still unresolved issues: this is where PAGIT is used.

PAGIT addresses the need for software to generate high quality draft genomes. It is based on a series of programs that we developed:

- 1. ABACAS, that is able to contiguate contigs from a de novo assembly against a closely related reference.
- 2. IMAGE, an iterative approach for closing gaps in assembled genomes using mate pair information. It is able to close gaps left open by the assembler in a draft genome, even when using the same data sets as used by the original assembler.
- iCORN, that enables errors in the consensus sequence to be corrected by iteratively mapping reads to the current assembly.
- 4. RATT, a tool to transfer the annotation from a reference genome, or an earlier assembly, onto the latest assembly.

PAGIT bundles these software and makes them more accessible for users.

We have a mailing list for announcements and questions. PAGIT mailing list.

Please note that we submitted a protocol paper that will explain each step of the toolkit. Extra care must be taken, when working with genome bigger than 200mb.

Overview Download ABACAS IMAGE ICORN RATT FAQ

How to Get PAGIT:

We have bundled the four tools together with some other helpful scripts. In the download area they can be downloaded as precompiled versions, or pre-installed on a virtual machine.

CGATGGTTGGA T TG	G TGAATTCG C TGGACGGTGAC
CGATGGTTGGA	G C TGGACGGTGAC
CGATGGTTGGA 🕇 T	CG CTGGACGGTGAC
CGATGGTTGGA T	G C TGGACGGTGAC
CGATGGTTGGA	A TGAATTCG CTGGACGGTGAC
GATGGTTGGA T TG	A TGAATTCGC TGGACGGTGAC

[Genome Research Limited]

Conclusions

• To assemble or to align?

 Largely down to whether you have an acceptable reference sequence

- Which analysis software to use
 - Publicly available? It's free!
 - Commercial? Nice GUIs
- Don't be scared off!
- All of the problems discussed are tractable

What haven't I covered?

- Experimental design
- Sample preparation
 "Rubbish in / Rubbish out"
- How do I extract my useful data?
 - Genome Annotation
 - SNP extraction
- How do I write my Nature paper?
- Take home message:
 - Talk to us BEFORE you design your experiment

Acknowledgements

- Centre for Genomic Research
- Wellcome Trust Sanger Institute
- www.seqanswers.com
 SEQanswers: An open access community for collaboratively decoding genomes
 Bioinformatics (2012)
 doi: 10.1093/bioinformatics/bts128

Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

