Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

African swine fever

Dave A.G. Chapman, Alistair C. Darby, Melissa Da Silva, Chris Upton, Alan D. Radford, Haru Takamatsu, Linda K. Dixon

New CL4 Laboratory Complex being built at IAH Pirbright

History of African swine fever: Africa

- Disease described in E. Africa as acute haemorrhagic fever with high mortality in domestic pigs (Montgomery 1921)
- Source of infection infected warthogs which had contact with domestic pigs but did not show clinical signs
- Further reports of ASF in pigs from E and S Africa where ASFV has been present in wildlife hosts for a very long time
- Subsequent spread through central and W Africa (reported 1950s) and to Indian Ocean islands of Madagascar (1998) and Mauritius (2007)

African swine fever

- Causes haemorrhagic fever with mortality up to ≈100% in pigs
- Natural hosts warthogs, bushpigs and soft ticks, persistently infected with no disease signs
- Endemic in many African countries and in Sardinia. Introduced to Georgia, Armenia, Azerbaijan, Russia 2007 spread to 16 states by 2011
- Major outbreaks kill high proportion of pigs, eg 30% pigs Ivory Coast (1996), 20% pigs Benin (1997), 50% pigs Madagascar (1998)
- No vaccine. Control relies on rapid diagnosis, implementation of quarantine and slaughter of pigs

Geographic spread of ASFV

Outbreaks of ASFV in 2011

Wild species

Outbreaks of ASFV in 2012

Wild species

African swine fever virus

- Large double-stranded DNA virus, genome length 170-190 kbp
- Only member of virus family the Asfarviridae
- Replicates in the cytoplasm similar strategy to Poxviruses
- Virus particle contains RNA polymerase and other enzymes needed to start replication cycle – virus DNA is not infectious
- Encodes about 151-167 genes including enzymes required for replication and transcription of the virus genome
- Many genes are not essential for virus replication in cells but play an important role in virus survival and transmission
- Replicates mainly in macrophages in vivo

Function of genes encoded by ASFV

ASFV Multigene families

- 5 Multigene Families (MGFs)
 - A set of genes derived by duplication of an ancestral gene followed by independent mutational events resulting in a series of independent genes
- Constitute ~17% 25% of the coding capacity
- Lack similarity to other known genes, functions unknown
- Vary in gene number between ASFV isolates:
 - MGF 100:

- MGF 110:

– MGF 300:

- MGF 530:

— MGF 360:

- 2-3 genes per genome
- 5-13 genes per genome
 - 3-4 genes per genome
- 11-19 genes per genome
- 8-10 genes per genome

Deletion of MGF360 and MGF530 reduces virus growth in macrophages and virulence in pigs

Surrage et al., 2001, Nellan et al., 2002, Afonso et Burrage et al., 2004

Identification of genes involved in immune evasion/virulence

Functional analysis of virus encoded immune evasion/virulence genes

- Inhibitors of host signalling pathways;
 A238L, inhibits host pathways (NF-κB calcineurin, p300) predicted broad inhibition of host gene transcription.
 -DP71L dephosphorylation of eIF-2^α
 - Inhibitors of IFN

-Inhibitor of Toll-like receptors TLR 3 and 4

 Adhesion proteins
 CD2v, causes binding of infected cells and virus particles to red blood cells, impairs lymphocyte proliferation
 C-type lectin -resembles NK cell inhibitory receptors inhibits MHC Class I surface expression

Apoptosis inhibitors – IAP and Bcl2 homologues

Comparison of sequences of non-pathogenic and pathogenic strains

Sharon Brookes, Alex Hyatt

ASFV control measures

- Slaughter
- Experimental vaccine provides solid protection against homologous challenge, but genetic differences between pigs may play a role (MHC)
- Protection against heterologous challenge is more problematic
- DNA vaccination?

Sequencing of ASFV Georgia 2007/1 isolate

- To provide information for studies on gene function, information for vaccine development and to monitor genome evolution
- Virus from clinical samples grown in primary pig bone marrow cells and virus semi-purified from cell supernatants
- Contaminating cellular DNA removed by digestion with DNase then virus particles lysed with SDS and DNA extracted.
- Low molecular weight contaminants removed by filtration (Whatman Elu-Quick) and genome amplified by (Qiagen Repli-G kit).
- Genome sequenced and assembled at Liverpool (Roche 454 GSFLX) funded by RCVS Charitable Trust Grant

Chapman, Darby et al., 2011 Emerging Infectious Diseases

ASFV Genome Sequences

- ASFV Georgia 2007/1 sequence 189.3 kbp and encodes 166 open reading frames (ORFs)
- Sequences of virulent isolates vary from 182.3 to 193.9 kbp and encode 156-167 ORFs
- Sequences of non-virulent isolates is shorter 170 to 171.7 kbp and encode 151-157 ORFs
- Most length variation is close to termini and results from gain or loss of genes from 5 different multigene families

Comparison of complete genomes of Georgia 2007/1 isolate with other ASFV isolates

Comparison of the concatenated sequences of 125 conserved genes (~40,000 amino acids) shows the Georgia 2007 isolate is in the same clade as those from Europe and W. Africa but more distantly related -Chapman et al., Emerging Infectious Diseases 2011

Phylogeny of individual ORFs can vary from that of

125 concatenated genes – evidence for recombination or selection pressure

Strategy for ASFV Library Construction

Challenge/protection experiments

1. Pool top antigens from each bin and immunize pigs with these pools of antigens by DNA prime and recombinant vaccinia virus boost.

- 2. Pool top 5-10 antigens from positive bins, and immunize pigs.
- 3. Re-test and validate vaccine candidates

Summary of Progress: genome wide antigen screen

- DNA vaccine and protein expression libraries complete
- rVV library 47 complete
- Immunome screening in pigs conditions optimised and 47 antigens tested by DNA prime rVV boost
- T cell and antibody assays used to rank ORFs for immune responses
- First challenge experiments carried out

Future Prospects NGS

- Further complete ASFV genomes to expand spectrum of genotypes and phenotypically different viruses.
- RNA sequencing from cells or pigs infected with different ASFV isolates.
- better understanding of virus host interactions
- correlates of pathogenesis and protection

Acknowledgements IAH UK Liverpool University

- Linda Dixon
- Dave Chapman
- Lynnette Goatley
- Fuquan Zhang
- Charles Abrams
- Emma Fishbourne
- Pam Lithgow
- Derah Arav
- Geraldine Taylor
- Chris Netherton
- Haru Takamatsu
- Katherine King
- Josie Golding
- Pippa Hawes
- Don King
- Chris Oura
- Carrie Batten
- Geoff Hutchings

Alastair DarbyAlan Radford

Univ. Victoria, Canada

- Chris Upton <u>www.virology.ca</u>
- Melissa da Silva

Biodesign Institute Arizona State University

Center for Infectious Diseases

- Bert Jacobs
- James Jankovich
- Greg Golden

Center for Innovations in Medicine

- Kathy Sykes
- Mark Robida

Next Generation Sequencing – The Role of New Sequence Technologies in Shaping the Future of Veterinary Science

Hosted by the RCVS Charitable Trust

